ConservaClad Calculation Guide

 For a Lighter, Whiter and Brighter ConservatoryA Step By Step Guide to enable you to calculate how much ConservaClad you will require for your Conservatory Roof

ECOHOMEINSULATION

Lean-To Page 1

Victorian Page 3

Gable End Page 2

Edwardian Page 4

Ecohome Insulation has tried and tested these methods in practice. Please be aware, we account for wasteage so you may recieve surplus cladding. We accept no liablity for errors and this document has been created in good faith.

ConservaClad Calculation Guide

 For a Lighter, Whiter and Brighter Conservatory
ECOHOMEINSULATION

Lean-To Conservatory

STEP 1 Measure the Width (A) in Meters

STEP 2 Measure the Length (B) in Meters

STEP 3 Does (B) Measure More or Less than 2.5m?

If (B) is more than $\mathbf{2 . 5 m}$

(A) Divide by 0.3 m
= C

If (B) is less than $\mathbf{2 . 5 m}$

(A) Divide by 0.3 m

Then Divide by 2
= C

STEP 4 C x 1.05 = The Number of ConservaClad Boards Required

STEP 5 Measure around the perimeter of the conservatory (m).
Divide the total by 5 = Number of End Caps.

Flat Boards are generally not required, for Lean-To Conservatories.
Adjustable Angles are not required, for Lean-To Conservatories.
To see an example of this in practice, see page 5

ConservaClad Calculation Guide

 For a Lighter, Whiter and Brighter Conservatory
ECOHOME INSULATION

Gable End Conservatory

STEP 1 Measure the Width (A) in Meters

STEP 2 Measure the Length (B) in Meters

STEP 3 Does (B) Measure More or Less than 2.5m?

If (B) is more than $\mathbf{2 . 5 m}$

(A) $\times 2$

If (B) is less than $\mathbf{2 . 5 m}$

(A) Divide by 0.3 m
= C

Divide this figure by 0.3 m

$$
=c
$$

STEP 4 C x 1.05 = The Number of ConservaClad Boards Required

Note: If you wish to Clad the End Triangle Sections; Multiply T1 x T2. Divide this figure by $1.5=$ Additional Cladding Required. If you only wish to Clad one trianglular area - Divide this figure by 2

Generally 1 Flatboard is required for Gable End Conservatories Adjustable Angles are not required, for Lean-To Conservatories.
To see an example of this in practice, see page 5

ConservaClad Calculation Guide For a Lighter, Whiter and Brighter Conservatory

ECOHOME INSULATION

Victorian Conservatory

STEP 1 Measure the Width (A) in Meters

STEP 2 Measure the Length (B) in Meters

STEP 3 Does (A) Measure More or Less than 2.5m?
If (A) is more than $\mathbf{2 . 5 m}$

Divide this figure by 0.3 m
= X
STEP 4 If you have 2 Triangle Bays: Multiply (E)x(D) = Y
If you have $\mathbf{3}$ Triangle Bays: Multiply Measurement (E)x(D) x $1.5=Y$ If you have 5 Triangle Bays: Multiply Measurement (E)x(D) $\mathbf{x} \mathbf{3}=\mathbf{Y}$

STEP $5 \quad X+Y=Z$

STEP 6 Z x 1.05 = The Number of ConservaClad Boards Required
Ajustable Angle - Measure the total linear meters of angles (seams) where the Cladding will meet and need conceiling. For example ' D '

Generally one Flat Board is required for Victorian Conservatories.
To see an example of this in practice, see page 5

ConservaClad Calculation Guide For a Lighter, Whiter and Brighter Conservatory

ECOHOME INSULATION

Edwardian Conservatory

STEP 1 Measure (B) and (A) in Meters

STEP 2 Does (A) Measure More or Less than 2.5m?
If (A) is more than $\mathbf{2 . 5 m}$

(B) $\times 2$

Divide this figure by 0.3 m

$$
=x
$$

STEP 3 Multiply (E) $\mathbf{x}(\mathrm{D})=\mathbf{Y}$
STEP 4 Divided Y by $1.5=\mathbf{Z}$
STEP $5 \quad \mathrm{X}+\mathrm{Z}=\mathrm{W}$
STEP 6 W x 1.05 = The Number of ConservaClad Boards Required

Generally one Flat Board is required, for Edwardian Conservatories.
Ajustable Angle - Measure the total linear meters of angles (seams) where the Cladding will meet and need conceiling. For example ' D '.

ConservaClad End Caps - Measure all around the perimeter, where the Cladding will meet the wall plate (Meters). Divide the total by $5=$ No. of End Caps.
To see an example of this in practice, see page 5

ConservaClad Calculation Guide For a Lighter, Whiter and Brighter Conservatory

ECOHOME INSULATION

Example of Calculating a Lean To Conservatory
S1 - A Conservatory has a width (A) of 2.3 m
S2 - A Conservatory has a length (B) of 4 m
S3 - B is more than 2.5 m . So, $2.3 \mathrm{~m}(A) / \mathbf{0 . 3 m}=7.66$.
S4-7.66 x $1.05=8.04$ (9 ConservaClad Boards).

Example of Calculating a Gable End Conservatory
S1 - A Conservatory has a width (A) of 2.3 m
S2 - A Conservatory has a length (B) of 4 m
S3 - B is more than 2.5 m . So, $2.3 \mathrm{~m}(A) \times 2=4.6 \mathrm{~m} .4 .6 \mathrm{~m} / \mathbf{0 . 3 m}=15.33$
S4-15.33 x 1.05 = 16.09 (So, 17 ConservaClad Boards)

Example of Calculating a Victorian Conservatory
S1 - A Conservatory has a Width (B) of 2.3 m and a Length (A) of 4 m
$\mathbf{S 2}-(A)$ is more than 2.5 m . So, $2.3 \mathrm{~m}(B) \times 2=4.6$. Then $4.6 / \mathbf{0 . 3 m}=15.33(X)$
S3-3 Triangle Bays, (E) and (D) are 1.2m. So, $1.2 \mathrm{~m} \times 1.2 \mathrm{~m}=1.44 \times 1.5=2.16(\mathrm{Y})$
S4-15.33 (X) + $2.16(Y)=17.49(Z)$
S5-17.49 (Z) x 1.05 = 18.36 (19 ConservaClad Boards)

Example of Calculating the Edwardian Conservatory
For the purpose of this example: (B) 1.6 m , (A) 3.6 m , (D) 1.5 and (E) 2 m S2-(A) is more than 2.5 m . So $1.6 \mathrm{~m}(B) \mathbf{x} 2=3.2 \mathrm{~m}$. Then $3.2 / \mathbf{0 . 3 m}=10.66(X)$
S3-Multiply $2 \mathrm{~m}(\mathrm{E}) \times 1.5(\mathrm{D})=3(\mathrm{Y})$
S4-3(Y) / 1.5 = 2 (Z)
S5-10.66(X) + $\mathbf{2}(\mathbf{Z})=12.66(W)$
S6-12.66(W) x 1.05 = $\mathbf{1 3 . 2 9 ~ (S o , ~} 14$ ConservaClad)

For further information or for any technical advice,
please email us atsales@ecohome-insulation.com

